Тепловое излучение. Допустимые величины интенсивности теплового облучения поверхности тела работающих от производственных источников Подготовка прибора к работе и проведение измерений

7.1. Включается источник теплового излучения. Интенсивность теплового излучения измеряется актинометром , для чего открывается крышка с тыльной стороны актинометра и направляется в сторону источника тепла. Замеры осуществляются при отсутствии защитного экрана, поочередно с одним, двумя, тремя рядами цепей и с экраном из оргстекла. Продолжительность каждого замера – не менее 30 секунд.

7.2. Результаты измерений записываются в 3-й столбец таблицы 2 отчета, в 4-й столбец таблицы записываются значения интенсивности теплового излучения, переведенные в Вт/м 2 (1 кал/см 2 мин = 70 Вт/м 2).

7.3. Согласно ГОСТ 12.1.005-88 допустимая величина интенсивности теплового излучения составляет:

35 Вт/м2 – при облучении поверхности тела 50% и более

70 Вт/м2 – при облучении поверхности тела от 25 до 50%

100 Вт/м2 – при облучении поверхности тела не более 25%

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25 % поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

7.4.Делаются выводы:

    о необходимой защите (виде экрана) работника в соответствии с заданной долей площади поверхности облучения;

    об эффективности защитных экранов.

8.Общие теоретические сведения.

Метеорологические условия (микроклимат) являются важным фактором, оказывающим влияние на здоровье и работоспособность человека.

Нормируемые параметры микроклимата - это температура, относительная влажность, скорость движения воздуха и в некоторых производствах - интенсивность теплового излучения.

В цехах промышленных предприятий технологические процессы по выплавке и обработке металлов, по переработке и обработке лубяных волокон древесины, при обработке пряж и других материалов сопровождаются большими выделениями тепла, в результате чего значительно повышается температура воздуха рабочей зоны.

Нередко вблизи источников нагрева (нагревательные печи, сушилки и др.) рабочие подвергаются тепловому излучению.

Интенсивность теплового излучения - количество лучистого тепла (в калориях), падающего на 1 см 2 облучаемой поверхности за одну минуту (обозначается в кал/см 2 мин) или количество лучистого тепла (в килокалориях), падающего на 1 м 2 облучаемой - поверхности за 1час (обозначается в ккал/м 2 ч), которое также может оцениваться в Вт/м 2 .

Некоторые цеха (например, прядильные мокрого прядения, ткацкие, бельно-отделочные и др.) характеризуется высокой влажностью воздуха, причем в ткацких цехах она создается искусственно, для улучшения технологического процесса.

Повышенная подвижность воздуха иногда вызывает неприятные ощущения у рабочих, а сквозняки нередко являются причиной простудных заболеваний. Неблагоприятный микроклимат вызывает переутомление, понижение скорости реакции, скованность движений, что приводит к снижению сопротивляемости организма вредным воздействиям среды и к повышению опасности травмирования.

Благоприятные метеорологические условия являются важной предпосылкой для предупреждения заболеваемости, травматизма и способствуют повышению работоспособности, что приводит к росту производительности труда.

В связи с вышеизложенным, обеспечение оптимальных параметров микроклимата в рабочей зоне производственных помещений является важной задачей руководителей промышленных предприятий.

С физической точки зрения человек представляет собой «нагретое» до определенной температуры влажное тело. При усвоении продуктов питания в организме человека протекают биохимические процессы, сопровождающиеся выделением тепла. В состоянии покоя в теле человека образуется около 80 ккал/ч (93 Дж/с) тепла. При выполнении человеком работы (особенно физической) в зависимости от степени ее тяжести выделяется тепла 250-400 ккал/ч (290-464 Дж/с) и более.

В связи с тем, что на полезную работу затрачивается в среднем 15-20 % тепла, то количество тепла, образующегося в теле человека во время физического труда, в несколько раз больше теплового эквивалента производимой им работы. Однако для человека является необходимым условием, чтобы величина теплообразования в теле всегда была равна величине теплоотдачи (этим и объясняется постоянство температуры человеческого тела). Способность человеческого организма сохранять температуру тела на почти постоянном уровне при довольно значительных колебаниях температуры окружающей среды носит название терморегуляции .

Если этот тепловой баланс нарушается, то в случае недостаточной теплоотдачи наступает перегрев человеческого тела, а в случае избыточной теплопотери - переохлаждение. И то и другое приводит к нарушению нормального самочувствия и к снижению работоспособности.

Воздействие высокой температуры воздуха на организм человека, особенно в сочетании с высокой влажностью или тепловым излучением, может вызвать нарушение деятельности сердечно-сосудистой системы за счет обеднения организма водой. Потеря жидкости может достичь 5-8 литров в смену. Кровь при этом сгущается, становится более вязкой, нарушается питание тканей и органов; в легких случаях ухудшается самочувствие, а в тяжелых - наступают острые болезненные расстройства, называемые тепловым ударом.

Кроме того, лучистое тепло, воздействуя на зрение, может вызывать серьезные заболевания глаз – катаракту.

Тепло, образующееся в теле человека, отдается в окружающую среду тремя путями: излучением, конвекцией и испарением пота.

Эффективность отдачи организмом тепла зависит от температуры, относительной влажности и скорости движения окружающего воздуха.

С физиологической точки зрения совокупность перечисленных параметров окружающей среды должна быть такой, чтобы достигнутое тепловое равновесие соответствовало зоне хорошего самочувствия человека, зоне комфорта , т.е. чтобы отдача избыточного тепла происходила с наименьшими затратами энергии.

Микроклимат считается комфортным, если параметры температуры, относительной влажности и скорости движения воздуха соответствуют оптимальным нормам.

Оптимальные (комфортные) метеорологические условия в цехах должны обеспечиваться системами кондиционирования воздуха.

В качестве мер борьбы против тепловой радиации применяется теплоизоляция, экранирование, устройство водяных завес и устройство воздушных душей.

ТЕСТЫ.

Тест 3. Микроклимат.

Микроклимат помещений – это состояние внутренней среды здания, которое оказывает как положительное, так и отрицательное воздействие на человека, характеризуется показателями температуры, подвижности и влажности

1. Среднесуточная температура за 2 дня оказалась равной +12 градусов. Какой это период года:

1) теплый, 2) холодный, 3) нельзя определить.

Ответ:

Согласно ГОСТ 30494-96 Холодный период года –период года, характеризующийся средне суточной температурой наружного воздуха, равной 8º С и ниже . Теплый период года –период года, характеризующийся среднесуточной температурой наружного воздуха выше 8º С .

Согласно установленные санитарные правила и нормы (СНиП 23-01-99). Микроклимат производственных помещений достаточно сильно зависит от оценки характера одежды, так как она помогает добиться теплоизоляции и акклиматизироваться организму в разное время года. Теплым сезоном можно назвать температурный режим +10 и выше, а холодным - ниже +10.

2. Потеря тепла за счет конвекции пропорциональна:

Ответ:

Конве́кция (от лат. convectiō - «перенесение») - вид теплообмена, при котором внутренняя энергия передается струями и потоками.

В тех случаях, когда в теплообмене участвуют жидкости или газы, обычно возникают явления конвекции: одновременно с потоком тепла возникают потоки вещества - более нагретые слои всплывают кверху, а менее нагретые опускаются. Такое перемешивание в громадной степени ускоряет процесс теплообмена. В случае, когда твердое тело находится в обтекающем его потоке жидкости или газа, теплообмен также носит конвекционный характер и происходит значительно быстрее, чем в покоящейся среде. Поэтому даже небольшой ветер (сквозняк) приводит к увеличению потерь тепла с поверхности тела.

Отдача организмов тепла зависит от тепловых условий окружающей среды, которые определяются температурой, влажностью, скоростью движения воздуха и лучистой энергией.



Пропорциональными называются две взаимно зависимые величины, если отношение их значений остаётся неизменным.

Если две величины связаны между собой так, что увеличение (уменьшение) одной пропорционально (во столько же раз) увеличивает (уменьшает) и другую величину, то такие величины прямо пропорциональны .

3. Потери тепла за счет конвекции обратно пропорциональны:

1) влажности воздуха, 2) температуре тела, 3) температуре воздуха.

Ответ:

Если две величины связаны между собой так, что увеличение (уменьшение) одной пропорционально (во столько же раз) уменьшает (увеличивает) и другую величину, то такие величины обратно пропорциональны .

4. Потери тепла за счет конвекции не зависит от:

1) влажности воздуха, 2) температуре тела, 3) температуре воздуха.

Ответ:

5. Потери тепла за счет испарения пропорциональны:

1) влажности воздуха, 2) температуре тела, 3) плотности воздуха.

Ответ:

Испаре́ние - процесс фазового перехода вещества из жидкого состояния в парообразное или газообразное, происходящий на поверхности вещества. Процесс испарения является обратным процессу конденсации

6. Потери тепла за счет испарения не зависят:

1) влажности воздуха, 2) площади поверхности тела, 3) температуры воздуха.

Ответ:

7. При нормировании параметров микроклимата учитывается:

1) время года; 2) температура тела; 3) площадь поверхности.

Ответ:

Параметры микроклимата в соответствии с ГОСТ 12.1.005-88 и СанПиН 2.2.4. 548-96 должны обеспечивать сохранение теплового баланса человека с окружающей производственной средой и поддержание оптимального или допустимого теплового состояния организма.

Параметрами, характеризующими микроклимат в производственных помещениях, являются:

Температура воздуха, t˚C

Температура поверхностей (стен, потолка, пола, ограждений оборудования и т.п.), t п ˚C

Относительная влажность воздуха, W %

Скорость движения воздуха, V м/с

Интенсивность теплового облучения, P Вт/м 2

8. Какая скорость воздушного потока допускается при выполнении работ, связанных с нервно-эмоциональным напряжением:

1) до 1м/с; 2) до 0,5 м/с; 3) до 0,3 м/с; 4) до 0,1 м/с.

Ответ:

Нервно-эмоциональное напряжение может быть вызвано ответственностью за выполняемую работу, высокими требованиями к качеству сварных соединений, сложностью или необычностью работы, особенно в условиях дефицита времени.

согласно ГОСТ 30494-96 –изменение скорости движения воздуха –не более 0,07 м/с для оптимальных показателей и 0,1 м/с –для допустимых;

9. Какая температура (в градусах Цельсия) допускается при выполнении работ, связанных с нервно-эмоциональным напряжением:

1) 18-20; 2) 20-22; 3) 22-24 ; 4) 24-26.

Ответ:

Оптимальные и допустимые показатели температуры , относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений должны соответствовать величинам, приведенным в соответствующих документах. В кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники, а также в других помещениях при выполнении работ операторского типа, связанных с нервно-эмоциональным напряжением , должны соблюдаться оптимальные величины температуры воздуха (22-24°С) , его относительной влажности (40–60%,) и скорости движения (не более 0,1 м/с).

10. Какая влажность воздуха (в %) допускается при выполнении работ, связанных с нервно-эмоциональным напряжением:

1) 30-40; 2) 40-60; 3) 45-55; 4) 50-60.

Ответ:

11. Какие работы связанных с нервно-эмоциональным напряжением:

1) в кабинете; 2) за столом; 3) в кабине.

Ответ:

Нервно-эмоциональное напряжение - связно с наличием аварийных ситуаций, напряжением внимания и слухового анализатора в условиях шума.

12. Какова интенсивность теплового облучения от нагретых частей оборудования при 15% облучаемого тепла (Вт/м 2):

1) 30; 2) 40; 3) 50; 4) 60.

Ответ:

Интенсивность теплового облучения тела человека - тепловая энергия источника на единицу поверхности тела человека, Вт/м2.

Тепловое излучение от нагретых поверхностей играет немаловажную роль в создании неблагоприятных микроклиматических условий в производственных помещениях.

Наибольшую опасность возникновения лучистого тепла представляет расплавленный или нагретый до высоких температур металл. Передача тепла может происходить путем конвекции, теплопроводности и излучения. Перенос тепла осуществляется: при конвекции - движущейся средой (потоками воздуха, пара или жидкости); при теплопроводности - передачей тепла в твердых телах; при излучении - интенсивными инфракрасными лучами, которые непосредственно воздуха не нагревают, но при поглощении их твердыми телами лучистая энергия переходит в тепловую. Нагретые твердые тела становятся источниками теплоты и путем конвекции нагревают воздух в помещении.

Допустимые величины интенсивности теплового облучения поверхности тела работающих от производственных источников

Облучаемая поверхность тела, % Интенсивность теплового облучения, Вт/м2, не более

50 и более 35

не более 25 100

13. Какова интенсивность теплового облучения от нагретых частей оборудования при 40% облучаемого тепла (Вт/м 2):

1) 50; 2) 70; 3) 90; 4) 100.

Ответ:

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м2 при облучении 50% поверхности человека и более, 70 Вт/м2–при облучении 25 .50% поверхности и 100 Вт/м2–при облучении не более 25% поверхности тела.

14. Какова интенсивность теплового облучения от нагретых частей оборудования при 60% облучаемого тепла (Вт/м 2):

1) 80; 2) 90; 3) 100; 4) 110.

Ответ:

15. Какова интенсивность теплового облучения от открытых источников (Вт/м 2):

1) 120; 2) 130; 3) 140; 4) 150.

Ответ:

Интенсивность теплового облучения работающих от открытых источников (нагретого металла, стекла, открытого пламени и др.) не должна превышать 140 Вт/м2, при этом облучению не должно подвергаться более 25% поверхности тела и обязательно использование средств индивидуальной защиты.

16. К какому источнику относится лампа накаливания:

1) открытому; 2) закрытому; 3) ни к какому.

Ответ:

Ла́мпа нака́ливания - искусственный источник света, в котором свет испускает тело накала , нагреваемое электрическим током до высокой температуры. В качестве тела накала чаще всего используется спираль из тугоплавкого металла (чаще всего - вольфрама), либо угольная нить. Чтобы исключить окисление тела накала при контакте с воздухом, его помещают в вакуумированную колбу, либо колбу, заполненную инертными газами или парами галогенов.

Открытого или закрытого типа. В первом случае лампа и патрон не отделяются от внешней среды, во втором ― ограничены оболочкой. Дополнительный специальный уплотнитель делает возможным использование светильников в помещениях с влажным режимом.

17. Какова наиболее оптимальная температура в градусах Цельсия нагретых поверхностей, с которыми должен соприкасаться работник:

1) 30; 2) 35; 3) 40; 4) 45.

Ответ:

Теплозащитные средства должны обеспечивать облученность на рабочих местах не более 350 Вт/м2 и температуру поверхности оборудования не выше 308 К (35 °С) при температуре внутри источника до 373 К (100 °С) и не выше 318 К (45 °С) при температурах внутри источника выше 373 К (100 °С).

18. Какова максимальная допустимая температура в градусах Цельсия нагретых поверхностей, с которыми должен соприкасаться работник:

1) 35; 2) 40; 3) 45; 4) 50.

Ответ:

Во всех случаях температура нагретых поверхностей технологического оборудования или его ограждающих устройств в целях профилактики типовых травм не должна превышать 45°С .

19. На какое расстояние нужно удалить рабочее место от конструкции, температура которых выше допустимой на 4 градуса:

1) 1м ; 2) 2м; 3) 3м; 4) 4м.

Ответ:

При температуре внутренних поверхностей ограждающих конструкций ниже или выше оптимальных величин температуры воздуха рабочие места должны быть удалены от них на расстояние не менее 1 м .

20. Какие из средств защиты не относятся к индивидуальным:

1) очки; 2) костюмы; 3) экраны; 4) спецодежда.

Ответ:

Средства индивидуальной защиты (СИЗ) - средства, используемые работником для предотвращения или уменьшения воздействия вредных и опасных производственных факторов, а также для защиты от загрязнения. Применяются в тех случаях, когда безопасность работ не может быть обеспечена конструкцией оборудования, организацией производственных процессов, архитектурно-планировочными решениями и средствами коллективной защиты

Статья 212 ТК РФ устанавливает ряд условий, направленных на обеспечение безопасных условий труда. Одно из них - приобретение и выдача работодателем сертифицированных специальной одежды, обуви и других средств индивидуальной защиты. При обеспечении работников средствами индивидуальной защиты (далее - СИЗ), средствами для смыва и обезвреживания работодатель исполняет нормы трудового законодательства и защищает работников от воздействия вредных и опасных факторов производства.

Все физические тела, температура которых больше абсолютного нуля, испускают тепловые лучи.Тепловое излучение – электромагнитное излучение, испускаемое веществомза счет его внутренней энергии .

Интенсивность теплового излучения резко убывает с уменьшением температуры тел. Большинство твердых и жидких тел имеют сплошной спектр излучения, т.е. излучают волны всех длинλ.

Видимое человеком излучение (свет): λ = 0,40-0,75 мкм.

Инфракрасный (невидимый свет): λ = 0,75-400 мкм. Далее радиоволновой диапазон.

Средства измерения, определяющие температуру тел по их тепловому излучению, называютпирометрами излучения . Пирометры используются для измерения температуры в диапазоне 300-6000 о С. Для измерения температур больше 3000 о С пирометры являются практически единственными СИ, т.к. они бесконтактны. Теоретически верхний предел измерения пирометров неограничен. В пирометрах используется в основном видимый свет и инфракрасный диапазон.

Измерение температуры тел по их тепловому излучению основывается на закономерностях, полученных дляабсолютно черного тела . Если на внешнюю поверхность тела падает поток лучистой энергии Ф, то он частично поглощается Фп, отражается Фот и пропускается Фпр. Соотношение между этими потоками зависит от свойств тела и, в частности, от состояния его поверхности (степени шероховатости, цвета, температуры). Если тело поглощает весь падающий на него лучистый поток, токоэффициент поглощения его и такое тело называютабсолютно черным .

Реальные тела не являются абсолютно черными, и лишь некоторые из них по оптическим свойствам близки к ним, например, нефтяная сажа, платиновая чернь, черный бархат в области видимого света имеютα, мало отличающийся от 1.

Внешняя поверхность тел не только поглощает, но и испускает собственное излучение, зависящее от температуры.

В соответствии с законом Кирхгофаизлучательная способность тел пропорциональна их коэффициентам поглощения. Так как коэффициент поглощения абсолютно черного тела α абс.ч.т. =1, то оно обладает максимальной излучательной способностью.

В пирометрии излучения в качестве величин, характеризующих тепловое излучение тел, применяют энергетическую светимость (излучательность) и энергетическую яркость (лучистость). При этом следует различать полную и спектральную светимость и яркость.

Под полнойэнергетической светимостью понимают полную (интегральную)поверхностную плотность излучаемой мощности .

Энергетической яркостью тела в данном направлении называетсямощность излучения в единичный телесный угол с единицы площади проекции поверхности тела на плоскость, перпендикулярную данному направлению. Энергетическая яркость является основной величиной, непосредственно воспринимаемой человеческим глазом, а также всеми пирометрами, основанными на измерении температуры по тепловому излучению.


Все реальные тела по степени поглощения ими лучистой энергии отличаются от черного тела и имеют коэффициент поглощения меньше единицы. Излучательная способность реальных тел также отличается от лучеиспускательной способности черного тела и может быть охарактеризована коэффициентом излучения полнымε и спектральнымε λ .

Реальные тела при одинаковой температуре имеют различную излучательную способность , оценку которой производят по отношению к излучательной способности абсолютно черного тела (значок * относится к абсолютно черному телу)

гдеε λ –коэффициент спектрального излучения (степень черноты монохроматического излучения);

ε– коэффициент полного излучения (степень черноты полного излучения);

Е λ , Е λ * - спектральная энергетическая светимость;

В λ , В λ * - спектральная энергетическая яркость (воспринимается глазом);

Е, Е * - полная энергетическая светимость.

ε λ является функцией длины волныλ и температуры Т. Тело, у которогоε λ не зависит от температуры и λ, называют серым.

Зависимость между спектральной энергетической светимостью абсолютно черного тела Е λ * , его температурой Т и длиной волныλустанавливаетсязаконом Планка (см. рисунок 1.17)

где с 1 , с 2 – константы.

Для выбранной λ с увеличением температуры резко возрастает Е λ * или В λ * , так как

В λ * =k λ ∙ Е λ * . (1.32)

Указанный факт устанавливает возможность измерения температуры тела по его спектральной яркости с высокой чувствительностью.

Из графика (рисунок 1.17) видно, чтоλ max уменьшается с увеличением температуры. По мере уменьшения температуры черного тела максимум распределения энергии его излучения смещается в сторону длинноволновой области спектра.

Рисунок 1.17 – Семейство кривых Е λ * , построенных по закону Планка

Это и явилось основанием использовать для измерения яркостной температуры тел инфракрасную область спектра.

Для реальных тел, имеющих каждый свой ε λ

В λ = ε λ ∙ В λ * . (1.33)

Еслиреальные тела имеют одну и ту же температуру , то из-за разностиε λ измеренныезначения В λ будут различаться , что не позволяет иметь единую шкалу прибора, отградуированную в значениях истинной температуры различных объектов. В связи с этим шкалу пирометра приходится градуировать по излучению абсолютно черного тела.

Так как излучательная способность реальных тел меньше, чем черных, то показания пирометра будут соответствовать не действительной температуре реального тела, а дают условную температуру, в данном случае так называемую яркостную температуру.

Яркостной температурой реального тела называют такую температуру абсолютно черного тела, при которой его спектральная яркость В * (λ , Тя) равна спектральной яркости реального тела В (λ , Т) при его действительной температуре Т.

Используя (1.31), (1.32), (1.33), получим

Видно, что яркостная температура всегда меньше действительной температуры, так как ε λ < 1.

Приборы, предназначенные для измерения яркостной температуры в видимой части спектра, обычно называютоптическими и фотоэлектрическими пирометрами.

Как видно из рисунка 1.17, с повышением температуры максимум кривой распределения энергии излучения по спектру смещается в сторону коротких волн. Длина волныλ max , соответствующая максимуму кривой распределения энергии в спектре излучения черного тела, связана с абсолютной температурой Т соотношением

гдеb – постоянная, равная 2896 мкм К.

Соотношение (1.35) носит название закона смещения Вина. Пунктирная линия (см. рисунок 1.17), проходящая через максимумы всех кривых, соответствует закону смещения Вина.

В видимой части спектра смещениеλ max и, следовательно, перераспределение энергии, вызываемое изменением температуры тела, приводит к изменению его цвета. Это послужило основанием существующиеметоды измерения температур тел , основанные на изменении с температурой распределения энергии внутри данного участка спектра излучения, назватьцветовыми методами . Условная температура тела, измеренная этими методами, называется цветовой температурой.

Наибольшее распространение из существующих получил метод измерения цветовой температуры в видимой части спектра по отношению энергетических яркостей в двух спектральных интервалах.

Цветовой температурой (Тц) называется такая температура абсолютно черного тела, при которой отношение его спектральных энергетических яркостей при длинах волнλ 1 иλ 2 равно отношению спектральных яркостей реального тела при тех же длинах волн и его действительной температуры Т.

Известно, что . Учитывая (1.31), (1.32), (1.33), получим

Практически серыми считают реальные тела: керамика, оксиды металлов, огнеупорные материалы, гранит и др. Преимущества цветового метода для них очевидны, так как яркостная температура всегда, в отличие от цветовой, ниже действительной.

Приборы, предназначенные для измерения цветовой температуры по отношению спектральных энергетических яркостей, принято называтьпирометрами спектрального отношения или цветовыми пирометрами .

Прибор предназначен для плотности теплового потока излучения (или интенсивности теплового облучения, энергетической освещенности, облученности) в инфракрасной области спектра, а также для оценки экспозиционной дозы теплового облучения персонала в производственных и жилых помещениях, обусловленного влиянием локальных и общих источников тепла.

Описание средства измерений Измеритель тепловой облучённости "ТКА-ИТО"

Принцип действия измерителя состоит в преобразовании падающего на черный шар теплового потока в электрический сигнал, пропорциональный плотности этого потока(облученности), с последующим масштабированием и индикацией результата измерения.
Повышение температуры внутри черного шара определяет пропорциональную облученности реакцию на внешнее тепловое излучение, усреднённую по углу 4п (360°) и времени экспозиции, эквивалентную реакции тела человека на такие факторы окружающей среды, как радиационный и конвективный теплообмен. Это повышение температуры измеряется по индуцированному инфракрасному излучению от внутренней поверхности чёрного шара с помощью расположенного внутри него фотоприёмного модуля.
Фотоприёмный модуль содержит неселективный (в диапазоне длин волн от 1,5 до 20 мкм) приёмник излучения, датчик температуры корпуса модуля и схему компенсации температуры окружающей среды. Данные модуля обрабатываются микроконтроллером, и на дисплей электронного блока измерителя выводятся значения измеренной облучённости, а также производится индикация температуры внутри чёрного шара и температуры окружающей среды.

Конструкция прибора Измеритель тепловой облучённости "ТКА-ИТО"

Конструктивно измеритель состоит из блока черного шара на штативе и электронного блока, в состав которого входят устройство детектирования сигналов, устройство цифровой обработки результатов измерений и жидкокристаллический дисплей для отображения измеренных и вычисляемых значений. Конструкция измерителей исключает возможность несанкционированной настройки и доступа к измерительной информации, корпус опломбирован, пломба находится в местах крепления задней крышки электронного блока.

Основные технические характеристики прибора Измеритель тепловой облучённости "ТКА-ИТО"

* Примечание: ИВ- значение измеряемой величины (облучённости)

Условия эксплуатации прибора Измеритель тепловой облучённости "ТКА-ИТО"

Нормативные документы прибора Измеритель тепловой облучённости "ТКА-ИТО"

1. ГОСТ 8.558-2009. ГСИ. Государственная поверочная схема для средств измерений температуры
2. Федеральный закон Российской Федерации № 426-н «О специальной оценке условий труда» от 28.12.2013
3. Гигиенические требования к микроклимату производственных помещений. Санитарные правила и нормы СанПиН2.2.4.548-96

Область применения прибора Измеритель тепловой облучённости "ТКА-ИТО"

Выполнение работ по обеспечению безопасных условий охраны труда, санитарный и технический надзор в жилых и производственных помещениях, аттестация рабочих мест и другие сферы деятельности, регламентируемые требованиями Федерального закона РФ № 426-н « О специальной оценке условий труда», СанПиН 2.2.4.548-96, приказа Минсоцздравразвития РФ № 1034н, ISO - 7726:1998, ГОСТ 8.106-2001.

Программное обеспечение

  • Программа «», необходимая для проведения поверки (* .zip)

Комплектация прибора Измеритель тепловой облучённости "ТКА-ИТО":

  • Измеритель тепловой облучённости "ТКА-ИТО"
  • Элемент питания типа «АА» (2 шт)
  • Штатив-трипод напольный высотой h=1,3 м
  • Руководство по эксплуатации
  • Методика поверки МП 2411-0105-2014
  • Паспорт
  • Сумка для прибора
  • Транспортная тара

Существенные преимущества прибора Измеритель тепловой облучённости "ТКА-ИТО" перед аналогами

Прибор позволяет упростить и ускорить необходимые измерения интенсивности теплового облучения и на основе этого рассчитать среднюю радиационную температуру и величину экспозиции теплового облучения. Прибор полностью отвечает требованиям нормативных документов по измерению тепловой облучённости, регистрирует тепловое излучение с углом обзора 360 0 , обладает расширенным диапазоном измерений до 3500 Вт/м 2 , имеет повышенное быстродействие, благодаря оригинальной конструкции ЧШ, на дисплей прибора выводится информация о величинах тепловой облучённости, радиационной и окружающей температурах.

Измерение теплового облучения - процесс, который может помочь вычислить температуру, которая достигается во время радиационного воздействия, и степень экспозиции облучения. Специализированные высокоточные приборы для измерения теплового облучения можно купить только в специализированных магазинах, и наша организация - одна из таких компаний. «ТКА-ИТО» - профессиональное устройство, которое способно за короткий срок рассчитать и вывести на дисплей показатели облучения в тепловом спектре. Благодаря полному углу обзора, который равен 360 градусам, и сверхчувствительным датчикам, работающим в расширенном диапазоне, результаты вычисляются с минимальной погрешностью при наиболее быстром процессе работы. Такое устройство подойдет как для измерения облучения в жилом пространстве, так и для исследования в ходе проверки производственного или научного здания. В цену прибора для измерения теплового излучения входит поверка с метрологическими нормами, а интервал между поверками равен 24 месяцам. Отличное качество сборки и привлекательная цена - также немаловажные достоинства, которые делают этот измеритель настолько популярным в своем классе.

Интенсивность теплового излучения (Вт/м 2) определяется с помощью измерителя плотности теплового потока ИПП–2.

Измеритель ИПП-2 предназначен для измерений по ГОСТ 25380-82 интенсивности теплового потока, проходящего через обмуровку и теплоизоляцию энергообъектов. В комплект с прибором входит преобразователь плотности теплового потока с датчиком на пружине ПТП–Х–П (рис. 3а) и зонд для измерения температуры поверхности (рис. 3б).

Рис. 3.3а. Зонд для измерения плотности теплового потока

с пружиной (ПТП-Х-П)

Рис. 3.3б. Зонд для измерения температуры поверхности

Конструктивно прибор ИПП-2 (рисунок 4) выполнен в пластмассовом корпусе. На передней панели блока располагаются кнопки В и », а на боковой поверхности располагаются разъёмы для подключения прибора к компьютеру и сетевого адаптера. На верхней панели расположен разъем для подключения первичного преобразователя плотности теплового потока или температуры.

Рис. 3.4. Внешний вид прибора ИПП-2:

1 – индикация режимов работы аккумулятора; 2 – индикация нарушения порогов; 3 – кнопка » ; 4 – кнопка В; 5 – разъём подключения первичного преобразователя; 6 – светодиодный четырехразрядный семисегментный индикатор; 7 – разъем для подключения к компьютеру; 8 – разъем для подключения сетевого адаптера

Функционирование прибора осуществляется в одном из режимов: РАБОТА и НАСТРОЙКА.

Режим РАБОТА. Является основным эксплуатационным режимом. В данном режиме производится циклическое измерение выбранного параметра. Кратковременным нажатием кнопки » осуществляется переход между режимами измерения плотности теплового потока и температуры, а также индикации заряда аккумуляторов в процентах 0...100%. Нажатием кнопки » в течение двух секунд осуществляется переход прибора в режим «SLEEP», в этом режиме прибор гасит светодиодную индикацию, но продолжает измерения температуры и запись статистики. Выход из режима «SLEEP» производится нажатием любой кнопки. Нажатием кнопки В в течение двух секунд осуществляется переход прибора в режим НАСТРОЙКА. Кратковременное нажатие кнопки В выключает/включает прибор. В выключенном состоянии прибор прекращает измерения и запись автоматической статистики, при этом все настройки работы прибора и часов реального времени сохраняются. В режиме РАБОТА прибор может производить периодическую автоматическую запись измеренных значений в энергонезависимую память с привязкой ко времени. Схема режима РАБОТА приведена на рисунке 5.

Рис. 3.5. Схема режима РАБОТА

Светодиодная индикация в режиме РАБОТА. Светодиод 1 (рис. 3.4) характеризует состояние аккумуляторной батареи. В режиме заряда при подключенном сетевом адаптере светодиод горит постоянно до состояния 100% зарядки, затем гаснет. В режиме работы с отключенным сетевым адаптером светодиод погашен, и в случае если батарея заряжена менее чем на 10%. Светодиод 2 (рис. 3.4) миганием информирует о нарушении порогов. В режиме «SLEEP» мигает точка в четвертом разряде семисегментного индикатора.

Режим НАСТРОЙКА. Предназначен для задания и записи в энергонезависимую память прибора требуемых при эксплуатации рабочих параметров измерения. Заданные значения параметров сохраняются в памяти прибора при отсутствии питания (исключение составляют дата/время). Общая схема режима НАСТРОЙКА приведена на рис. 3.6.

Рис. 3.6. Общая схема работы режима НАСТРОЙКИ

Данный режим позволяет настроить два порога, имеющиеся в приборе, по одному на каждый параметр. Пороги - это верхняя или нижняя границы допустимого изменения соответствующей величины. При превышении измеряемой температуры верхнего порогового значения или снижении ниже нижнего порогового значения прибор обнаруживает это событие и на индикаторе загорается светодиод 2 (рис. 3.4). Нарушение порогов также сопровождается звуковым сигналом.